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Starting with an oscillatory net of neural elements, increasing variability induces a phase transition to
excitability. This transition is explained by a systematic effect of the variability, which stabilizes the formerly
unstable, spatially uniform, temporally constant solution of the net. Multiplicative noise may also influence the
net in a systematic way and may thus induce a similar transition. Adding noise into the model, the interplay of
noise and variability with respect to the reported transition is investigated. Finally, pattern formation in a
diffusively coupled net is studied, because excitability implies the ability of pattern formation and information
transmission.
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In recent decades it was shown that noise has a strong
influence on the dynamics of many nonlinear systems. Ex-
amples are stochastic resonance �1�, spatiotemporal stochas-
tic resonance �2,3�, and noise-induced phase transitions �4�.
A special noise-induced phase transition in a net of oscilla-
tory FitzHugh-Nagumo �FHN� �5� elements was reported in
�6� and further studied, using colored multiplicative noise, in
�7�. This transition leads to the suppression of synchronous
oscillations and the restoration of excitable dynamics. This
phenomenon �noise-induced excitability �NIE�� is caused by
a systematic contribution of parametric noise, which stabi-
lizes a deterministically unstable fixed point of the local dy-
namics. In contrast to noise internal variability, which is also
omnipresent in nature, denotes static stochastic differences
between the otherwise equal elements of a net. Variability
can influence the spatiotemporal dynamics of many systems.
The influence of parameter variability on the synchronization
of coupled oscillators was investigated by Winfree �8� and
Kuramoto �9�. These results are the basis for most of the
studies on synchronization even today �10�. The effect of
variability on spatiotemporal chaos was observed in �11�.
Furthermore, variability can play an important role for pat-
tern formation in a net of biochemical oscillators �12�. Sto-
chastic influences are also relevant in gene expression, e.g.,
providing the flexibility needed by cells adapting to fluctuat-
ing environments �13�.

Some of these theoretical findings were confirmed by ex-
periments and seem to play an important role in biological
and chemical systems. Fluctuations are able to enhance the
output signal of a neuron �14� and help the paddle fish to
locate its prey �15�. Furthermore, stochastic influences can
support pattern formation and wave propagation in spatially
extended systems, for example, in the photosensitive
Belousov-Zhabotinsky reaction �16,17�.

In this paper it is shown that variability can have a sys-
tematic effect on a biophysical net, similar to the systematic
contribution of multiplicative noise, which follows from
small noise expansion �4�. In a large net with sufficient cou-
pling strength this effect can induce a phase transition. To
demonstrate this a net of globally coupled oscillatory FHN
elements is studied, where an increasing variability leads to a
transition from the oscillatory regime to the excitable one
�variability-induced excitability �VIE��. In a next step para-
metric noise �6,7� is added in the model equations and its

interplay with the variability is investigated. Both have a
strong systematic influence on the net dynamics and thus on
the border between the oscillatory and the excitable regimes.
Finally, pattern formation in a diffusively coupled net in the
presence of both noise and variability is studied, because the
occurrence of excitability allows information transmission in
such a net �excitation waves�. The observed pattern forma-
tion strongly depends on the variability and on the noise.

The system under consideration is a net of N�N coupled
FHN elements in the presence of parametric multiplicative
noise �ij�t� and variability in the parameter c,

u̇ij =
1

�
�uij�1 − uij��uij − a� − vij + du� + quKij ,

v̇ij = uij − cij�1 + �ij�vij , �1�

where Kij and qu denote the coupling function and strength,
respectively. In this minimal model of neural dynamics uij�t�
represents the fast relaxing membrane potential, while vij�t�
denotes the slow ion recovery variable. For a single element
the set of two equations describes essential parts of the
Hodgkin-Huxley model for neuronal dynamics quite well.
Other minimal models are also of relevance, e.g., a direct
reduction of the four-variable Hodgkin-Huxley model �18�.

The time scales are separated by the small parameter �
=0.01. The time is specified in time units �t.u.�, which accord
approximately with the oscillation period of the net. The
equations are integrated on a discrete spatiotemporal grid
using the Heun method ��t=0.001 t .u . � �4� and the forward
time centered space scheme ��h=1.0� in time and space,
respectively. The integration in space is performed using pe-
riodic boundary conditions. The grid points are labeled by
the indices 1� i , j�N.

In the present paper only noise and variability in the slow
variables vij�t� are considered. Only multiplicative paramet-
ric noise has a systematic effect on the global net dynamics
and thus only noise and variability in the parameter c are
studied. Due to the variability the values �cij� of the param-
eter c can change from element to element. The parameter
values cij are Gaussian distributed numbers, with
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�cijckl� = �v
2�ij,kl, �cij� = C . �2�

In the following, �v
2, the variance of the Gaussian distribu-

tion P�c ,�v�, denotes the variability intensity and �v the
variability strength. The term �ij�t� is taken to be zero-mean
spatially uncorrelated Gaussian white noise. Hence the cor-
relation function reads

��ij�t��kl�t��� = �m
2 �ij,kl��t − t�� , �3�

with the noise intensity �m
2 and the noise strength �m.

Throughout this paper the following set of parameters is
used: �a ,C ,du�= �0.5,4.6,0.1�, while the coupling strength
qu, the system size, the noise strength �m, and the variability
strength �v are varied. For �m=0 and �v=0, each FHN ele-
ment performs autonomous limit cycle oscillations, yielding
a synchronized output in the case of qu	0 and appropriate
initial conditions.

The dynamics of a FHN element strongly depends on its
parameter value cij �Fig. 1� and thus on the gradient angle of
the linear nullcline


�cij� = arctan�cij
−1� . �4�

For 4.41�cij �5.19 the element is in the oscillatory regime
�limit cycle around an unstable fixed point�. For cij 	5.19 a
stable fixed point occurs on the right side of the local maxi-
mum of the cubic nullcline and for 0�cij �4.41 on the left
side of the local minimum of the cubic nullcline. In the last
case a small excitation can stimulate a large loop in phase
space �single spike� before the element goes back to the fixed
point. This dynamic regime is called the excitable regime.
For cij �0 the dynamics of the element completely changes,
causing the numerical integration to get unstable. Conse-
quently the parameter values cij �0 have to be excluded by
setting the probability distribution P�c ,�v� to zero for corre-
sponding values of c. For �v=2.5, the largest variability
strength used in this paper, this means that 3% of the
Gaussian-distributed cij are excluded. This discussion shows
that the net �Eq. �1�� with variability in the parameter c con-
sists of elements in different dynamical regimes �Fig. 2�a��,
where the probability of an element to be excitable depends
on �v �Fig. 2�b��.

First a global coupling of the net is considered. The cou-
pling function is defined as

Kij = ū − uij , �5�

where ū denotes the mean value of the fast variable for all
elements �mean field�. Later, in order to study pattern forma-
tion and signal transmission through the array, the function
Kij is chosen as diffusive nearest-neighbor coupling, using a
nine-point Laplacian for radial symmetry,

Kij = �2uij ,

�2uij =
1

6
�ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 + 4�ui+1,j

+ ui−1,j + ui,j+1 + ui,j−1� − 20ui,j� . �6�

In the following a net is called oscillatory if a spatially uni-
form solution, which is periodic in time, is stable. If a spa-
tially uniform, temporally constant solution is stable and a
small excitation can cause a large loop in phase space, the
net is called excitable. If diffusive coupling is used one can
observe patterns like scroll rings or spiral waves in an excit-
able net �19�. If these patterns vanish for t→� the net is
called subexcitable �20�. In this paper these expressions are
also used for finite nets with noise and variability even if in
these cases small fluctuations around these ideal solutions
occur.

The multiplicative noise �ij�t� may have a systematic ef-
fect on the dynamics of a FHN element and thus on the
dynamics of the net �6,7�. This can be shown when a small
noise expansion �4� is applied. The first order of the expan-
sion reads

u̇ij =
1

�
�uij�1 − uij��uij − a� − vij + du� + quKij ,

v̇ij = uij − cij�1 −
1

2
�m

2 cij�vij . �7�

This result means that the parameter �m changes the gradient
angle of the linear nullcline for all elements,


�c,�m� = arctan	�c −
1

2
�m

2 c2�−1
 . �8�

Increasing the noise strength starting with �m=0 tilts the
linear nullclines to the left. For �v=0 this means that the
unstable fixed point of the local dynamics moves toward the

FIG. 1. Nullclines in phase space �u ,v� for one FHN element
�Eq. �1��: �—� cubic nullcline, �¯� linear nullcline with cij =3.0,
�- - -� linear nullcline with cij =4.6, and �-·-� linear nullcline with
cij =6.0.

FIG. 2. �a� �—� Probability distributions P�c ,�v� for three dif-
ferent �v. Borders between the dynamical regimes: �¯� c=5.19,
�- - -� c=4.41, �-·-� c=0. �b� Probability Pex��v� for one element to
be in the excitable regime �0�cij �4.41�.
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stable branch of the cubic nullcline and becomes stable for
�m�0.13. Multiplicative noise can thus induce a transition
from an oscillatory to an excitable net �6�. The variability in
the parameter c does act in a different way, but it also has a
systematic effect on the net. The mean gradient angle of the
linear nullclines of the net,

�
� =

�
i,j=1

N


�cij,�m�

N2 , �9�

is a macroscopic net parameter. This parameter can be cal-
culated approximately for a large net,

�
� � �
���m,�v� = 
−�

�


�c,�m�P�c,�v�dc . �10�

Using Eqs. �8� and �10� one finds that �
� depends on �v and
�m.

The results of Eq. �10� for a system in the presence of the
multiplicative noise, but without variability, are displayed in
Fig. 3�a�. The parameter �
� is growing with increasing noise
strength. For 
ij 0.222 the fixed point of a single element is
stable and thus the element is in the excitable regime. For
that reason one expects a large strongly coupled net to show
excitable behavior for �m0.13. This was demonstrated in
�6,7�. For �
��0.260 the subexcitable regime in a diffu-
sively coupled net is reached. In Fig. 3�b� the influence of the
variability strength on �
� for �m=0 is shown. The mean
gradient angle is growing with �v and one would expect a
transition to VIE in a strongly coupled net, similar to NIE.

In Fig. 4 the mean gradient angle �
� is plotted for a net in
presence of the noise and the variability. The value of the
mean gradient angle does strongly depend on �m and �v. If,
as assumed, �
� is the relevant parameter for the observed
dynamics of the net one expects to find a transition from the
oscillatory to the excitable regime for values of �m and �v
associated with �
��0.222. The same is true for the transi-
tion to the subexcitable regime in a diffusive coupled net for
�
��0.260.

To find the expected transition from an oscillatory net to a
net with a stable spatially uniform temporally constant solu-
tion in simulations of Eq. �1� the time average of the mean
field of the fast variable

M = �ū�t �11�

is used as an order parameter. The transition is associated
with a jump in this parameter from M 	0.40 for an oscilla-
tory net to M �0.24. In the following this jump is marked by
a contour line for M =0.25, which is denoted by Mfi. To
display that the net is excitable one has to show additionally
that the elements of the net are in the part of phase space
where an excitation is possible �6�. For that reason the rela-
tive rest time �RRT� of all elements of the net in this special
part of phase space �uij �0.35 and vij �0.1� is used as an
additional order parameter. The transition to excitability is
marked by a contour line for the value 0.98 of the RRT. This
contour line is denoted by RRTex. One has to notice here that
the transition to the subexcitable regime does not cause a
jump in the RRT and hence can only be measured qualita-
tively �7�.

Numerical results for M and the RRT on varying the cou-
pling strength qu are plotted in Fig. 5. With the multiplicative
noise and �v=0 one finds the expected transition from an
oscillatory net to an excitable one �Figs. 5�a� and 5�b��. Mfi
depends on qu and for a weak coupling �qu�20� the spatially
homogeneous solution of the net does not become stable. A
strong coupling is necessary to minimize the random influ-

FIG. 3. Mean gradient angle �
� from Eq. �10� for a large net of
FHN elements �Eq. �1��, �a� dependent on �m with �v=0, �b� de-
pendent on �v with �m=0. �¯� �
�=0.222. �- - -� �
�=0.260.

FIG. 4. Mean gradient angle �
� from Eq. �10� for a large net of
FHN elements �Eq. �1��, dependent on �v and �m; �¯� �
�
=0.222, �- - -� �
�=0.260.

FIG. 5. Results for Eq. �1� with global coupling �Eq. �5��. �a�,�b�
boundaries of NIE, �v=0. �c�,�d� boundaries of VIE, �m=0. �a�,�c�
mean field, �—� Mfi. �b�,�d� relative rest time, �—� RRTex. �- - -�
predicted border of oscillatory and excitable nets. Other parameters:
N=100.
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ences of the noise and to bind the net to the noise induced
stable fixed points of the single elements �6�. For a large
coupling the transition occurs near the predicted value of �m
�Fig. 3�. The boundaries of the NIE regime are displayed by
the RRT. For a large enough coupling an increase of the
noise strength starting from �m=0 leads to a jump in this
parameter. If the NIE regime is reached a further increase of
the noise strength leads to a slow decrease of the RRT. This
is due to the fact that growing �m now leads to larger fluc-
tuations around the fixed points and to a shift of the stable
fixed points to larger values of vij. This explains, why NIE is
found only for a intermediate noise strength.

For a net without noise but in the presence of the variabil-
ity �Figs. 5�c� and 5�d�� the elements of the net are different
from each other and show variable dynamics without cou-
pling. Nevertheless, for coupling strengths qu�25 this large
net shows a globally synchronized dynamics �mean field dy-
namics� for the observed values of the variability strength. In
this region of parameter space one finds a transition from an
oscillatory to an excitable net, similar to NIE. This
variability-induced excitability is found for intermediate
variability intensities. For a large coupling the transition oc-
curs near the predicted value of �v, but the convergence
toward this value is slower than for NIE. This convergence
nevertheless confirms the presumption that the dynamics of
the net is determined by the parameter �
� �Eq. �10��, which
is systematically changed by the variability strength �Fig. 3�.

In Figs. 6�a� and 6�b� the influence of the net size on the
boundaries of the NIE regime is plotted. It is clearly visible
that a minimal net size N�N with N�10 is necessary to find
NIE. The dynamics of a small net is dominated by the re-
maining random influences of the noise and hence NIE can-
not be observed �6,7�. The larger the net the smaller the
remaining random influences of the noise. For a sufficiently
by large N the transition occurs at the predicted value of �m.

For small N the boundaries of VIE �Figs. 6�c� and 6�d��
are completely different from the boundaries of NIE. In this
case no clear contour lines Mfi and RRTex exist and conse-
quently the border of the transition is not well defined. The

reason for this phenomenon is that the prediction of �
� from
Eq. �10� is valid only for large N. For small nets �
� can
differ from the predicted value, and thus the dynamical re-
gime is not completely determined by the variability strength
�v. For a sufficiently large N the mean gradient angle of the
linear nullclines of a net converges toward the prediction and
one finds a clear transition from an oscillatory to an excitable
net with increasing variability strength. In Fig. 6 such a clear
transition is visible for nets with N50.

The results presented show that in large nets with strong
coupling the increasing variability strength leads to a clear
transition from an oscillatory net to VIE. Knowing the net
parameter �
� one can predict this transition, which supports
the assumption that a systematic effect of the variability is
the reason for VIE. This clearly demonstrates, that the tran-
sition to a global excitable behavior of the whole net is a
collective effect which is not determined by a certain number
of excitable elements in an oscillatory net. This assumption
is further supported by simulations of a net of FHN elements
using additive variability instead of variability in the param-
eter c. In this case one also gets a fraction of excitable ele-
ments depending on the variability strength. Nevertheless the
net still shows a more or less disturbed global oscillatory
dynamics �qu50 and N100�, even for large variability
strengths which lead to a fraction of excitable elements
larger then 40%. This can be easily explained using the as-
sumption that �
� is relevant for the observed dynamics. Ad-
ditive variability does not have a systematic effect on the net
and thus �
� remains unchanged. For that reason one does
not find a transition to VIE.

In a next step the combined influence of the noise and the
variability in a large net �N=100� with a strong coupling
�qu=50� is studied. The results are plotted in Fig. 7. The
contour line Mfi is a function of �m and �v which corre-
sponds perfectly with the theoretical prediction represented
in Fig. 4. This means, that the macroscopic parameter �
�
determines the dynamics of the observed net. It is not impor-
tant whether the systematic change of this parameter, which
induces the transition, is due to the noise or due to the vari-
ability. In Fig. 7�b� the contour line RRTex divides the pa-
rameter space into three distinct areas. For small �m and �v
the net is oscillatory. For parameter values that correspond to
the area enclosed by RRTex the observed net shows excitable
dynamics, and for large �m and �v the net is in the subexcit-
able regime. The borders between the dynamical regimes
correspond qualitatively with the prediction visible in Fig. 4,

FIG. 6. Results for Eq. �1� with global coupling �Eq. �5��. �a�,�b�
boundaries of NIE, �v=0. �c�,�d� boundaries of VIE, �m=0. �a�,�c�
mean field, �—� Mfi. �b�,�d� relative rest time, �—� RRTex. �- - -�
predicted border oscillatory to excitable net. Other parameters: qu

=50.

FIG. 7. RRT and M for Eq. �1� with global coupling �Eq. �5��,
dependent on �m and �v. �a� mean field, �—� Mfi. �b� Relative rest
time, �—� RRTex. Other parameters: qu=50, N=100.
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but the border to the subexcitable net is shifted to smaller
values of �m and �v. Nevertheless, these numerical results
impressively support the presumption that �
� is the relevant
parameter for the observed dynamics of a large and strongly
coupled net.

In order to study pattern formation and signal transmis-
sion through the oscillatory net diffusive coupling �Eq. �6�� is
used. Snapshots of the fast variable for different �v and �m
=0 are plotted in Fig. 8. Looking at Fig. 3�b� a transition to
excitability is expected for �v�1.0. For smaller values of
the variability strength the net is oscillatory and with appro-
priate initial conditions a more or less synchronous oscilla-
tion results �Fig. 8�a��. For the predicted value of �v the net
dynamics changes completely and spiral waves appear. This
pattern formation is typical for excitable nets. For larger �v
�Figs. 8�c� and 8�d�� the spatially uniform, temporally con-
stant solution dominates for almost all initial conditions.
Nevertheless excitation waves can still be induced. The bor-
der to the subexcitable net, where all excitations die out for
t→� �Fig. 8�e��, is found for �v=2.1, nearly the predicted
value �Fig. 3�. Similar pattern-forming regimes are found for
a net with multiplicative noise and �v=0 increasing the noise
strength starting from �m=0.

In a next step the interplay of the noise and the variability
in a diffusively coupled net is studied �Fig. 9�. The borders
between the different pattern-forming regimes depend on �m
and �v. For small noise and variability strengths the net is
oscillatory and exhibits a nearly synchronous oscillation. The
border from the oscillatory to the excitable behavior, where
spiral waves appear in the simulation results, follows the
prediction from Eq. �10�. The transition from pattern forma-
tion to a spatially uniform temporally constant behavior is
also connected with a certain value of �
�. The border to the
subexcitable regime, which is not visible in Fig. 9, corre-
sponds quite well with the curve �
�=0.260 in Fig. 4. These
results substantiate the assumption that �
� is the relevant
parameter for pattern formation in the observed net. One just
has to know the value of �
� to predict the patterns found in
the simulations.

In summary, it has been shown that variability can induce
a transition to excitability in a large oscillatory net of neural
elements with a strong coupling. This transition is explained
by a systematic effect of the variability, which changes the
macroscopic net parameter. A theoretical expression for this
parameter, in dependence on the variability strength, pro-
vides a prediction of the border to VIE in the limit of large N
and strong coupling.

In a net with additional multiplicative noise the parameter
�
� depends on the noise strength as well and so does the
border of the described transition. Simulations of the net
show the transition for the expected values of �m and �v.
This substantiates the fact that the parameter �
� determines
the dynamics of the observed net. The transition to excitabil-
ity implies the ability of a diffusively coupled net to show
pattern formation. In simulations the expected patterns are
found in the predicted regions of parameter space. Thus the
parameter �
� determines the patterns found in the simulated
net.

The transition to excitability was studied using the para-
digmatic FHN model in a rather general framework. We
hope that these theoretical findings will contribute to the
theory of extended systems influenced by variability and
noise �4�. Maybe our results can also help to develop new
strategies to suppress malfunctioning neural oscillations and
to restore the functionality of neural networks.

FIG. 8. Snapshots of uij�t� for Eq. �1� with diffusive coupling
�Eq. �6��, dependent on integration time t and �v. �a�–�c� Random
initial conditions. �d�,�e� Initial conditions induce two spiral waves
in an excitable net. Other parameters: N=256, qu=50, �m=0.

FIG. 9. Snapshots of uij�t� for Eq. �1� with diffusive coupling
�Eq. �6�� and random initial conditions, dependent on �v and �m.
Other parameters: t=50 t .u., N=256, qu=50.
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